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We seek a route to the equilibrium where all the agents cooperate in the iterated prisoner’s dilemma game on
a two-dimensional plane, focusing on the role of tit-for-tat strategy. When a time horizon, within which a
strategy can recall the past, is one time step, an equilibrium can be achieved as cooperating strategies dominate
the whole population via proliferation of tit-for-tat. Extending the time horizon, we filter out poor strategies by
simplified replicator dynamics and observe a similar evolutionary pattern to reach the cooperating equilibrium.
In particular, the rise of a modified tit-for-tat strategy plays a central role, which implies how a robust strategy
is adopted when provided with an enhanced memory capacity.
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I. INTRODUCTION

One of the main interests in statistical physics is related
with the equilibration process of a given system composed of
many interacting elements. For instance, the classical Ising
system made up of locally interacting spins approaches an
equilibrium, characterized by the minimum of the Helmholtz
free energy. Such a model system in statistical physics is
defined by the Hamiltonian and can be readily studied by
updating spins with local Monte Carlo rules in numerical
simulations �1�. A lot of interactions including ecological,
social, and economical ones are more complicated than that
of spins as they are usually asymmetric and history depen-
dent. Furthermore, most of these systems beyond the simple
physics model cannot be described by the simple Hamil-
tonian approach. Even if no analytical solution is available,
we may expect the system to evolve by successive local ad-
aptations, with searching for an optimal point on the fitness
landscape. However, when the interaction is asymmetric, it is
possible that the equilibrium reached by local dynamics may
not be optimal in a global sense.

The prisoner’s dilemma �PD� game is a famous model of
such disparity. The typical story begins as follows. Two sus-
pected accomplices are caught by the police for a crime de-
serving of 4 years’ imprisonment each. After separating two
suspects from each other, the police offers a deal to each of
them: If only one confesses the crime and the other remains
silent, the informer will be rewarded and set free, while the
other one will receive an aggravated punishment �say 5 years
in prison�. On the other hand, if both keep silent, they will
get some punishment which is supposed to be not so heavy
�e.g., 2 years in prison�. It is still true that they can get light
punishments by cooperating to each other. From an indi-
vidual viewpoint, however, it is always better to defect the
other, so they will be eventually sentenced 8 years in total as
the police wanted. Throughout the present paper, the game
results are quantified by four elementary payoffs: The temp-
tation to defect as T=5, the reward of cooperation as R=3,
the punishment from mutual defection as P=1, and the dam-

age from being sucked as S=0. Note that the payoffs satisfy
two inequalities. The first one T�R� P�S locates the Nash
equilibrium �2� at mutual defection, and the second 2R�T
+S sets the mutual cooperation as optimal in total.

The conclusion of the PD game is highly nontrivial in that
local optimization will end up with the poorest result in a
global sense. The first breakthrough in this dilemma was
made by performing the game iteratively, where the system
could achieve the optimal point of mutual cooperation �3�.
Iteration affects the system’s trajectory in two ways: Since
the strategy space comes to have a much larger dimension-
ality than choosing between cooperation and defection, there
enters a possible route to mutual cooperation. In addition, as
the time scale of interaction is separated from that of selec-
tion, the stability of equilibria and their basins of attraction
may be changed: As to the PD game, for example, slow
selection favors the weaker strategy �i.e., cooperation� from a
population genetics point of view �4�. Nevertheless, the equi-
librium in which all agents cooperate is usually accessed by
a detour consisting of intermediate stages.

In the iterated PD game, there are successfully cooperat-
ing strategies some of which are as follows: �i� Grim trigger
�GT� initially cooperates, but any single defection by its op-
ponent makes GT defect forever �5�. �ii� Tit-for-tat �TFT�
also starts with cooperation, and then does what the oppo-
nent did. This simple strategy is famous for its own virtues,
i.e., being nice, retaliating, forgiving, and nonenvious �3�. By
nice, we mean that a strategy never provokes the opponent
first by defection. Likewise, retaliating and forgiving mean
that it defects after defected, and cooperates when the oppo-
nent changes back to cooperation. Finally, by being nonen-
vious, TFT allows coexistence of other strategies. However,
one should note that an erroneous defection between TFT’s
leads to a chain retribution until a new error makes them
cooperate again. �iii� Pavlov keeps its last move if paid
highly and switches to a different move otherwise, as it is
often called win-stay lose-shift �6�. Unlike the other two, it
forgives a mistake between themselves.

Since the above-mentioned three strategies remember
only the moves in the last time step, they all belong to a set
of strategies which are confined in the time horizon of one
time step, which we will call M1. Note that the actual amount*Corresponding author; beomjun@skku.edu
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of information in use is different: GT and TFT require only
the opponent’s last move, while Pavlov recalls both of its
opponent’s and its own. Likewise, Mn means the set of strat-
egies which uses the last k��n� time steps in making a de-
cision. By giving an explicit restriction to the time horizon,
our strategy space is different from that in the state space
approach �7�.

In order to investigate how the system is evolved by se-
lection and adaptation, we start with every possible strategy
in M1 and M2, respectively, and examine surviving strategies
to understand the route to the equilibrium. While the genetic
algorithm has been often used in exploring a large strategy
space �8,9�, we aim at an almost exhaustive search in that all
the strategies are explicitly considered at least once. In par-
ticular, we do not include any mutation processes as in Ref.
�10� for fixing the strategy space we must scan. Nor do we
treat stochastic strategies �11–14�, as the deterministic repre-
sentation shows the pure decision characteristics of a strategy
more clearly. Note that we mostly employ typical setups ex-
cept for the time horizon in order to keep the situation as
simple as possible. We therefore pass over many interesting
variations of the PD game, such as the idea of payoff-based
strategies �15�. The spatial structure we study here is a two-
dimensional plane which provides spatial reciprocity for co-
operators �16� �see, e.g., Refs. �17,18� for other topological
structures�, but we do not employ the dynamic preferential
selection �19� and let each agent play with its every neighbor
equally. Under such conditions, we find that M2 has its own
TFT modified from the original one in M1, which seemingly
indicates a generic pattern in the evolution of cooperation.
Even though the reciprocity has been thought of as relevant
to the emergence of cooperation even in longer time horizons
�8�, such concrete strategic forms, which are directly related
to the original TFT, have not been reported yet.

The present paper is organized as follows: In Sec. II, we
check the case of M1 to introduce our basic scheme. In Sec.
III, we apply it to M2 and present the surviving strategies,
including the modified type of TFT. Finally, we discuss and
conclude this work in Sec. IV.

II. METHODS

A. Bitwise representation of strategies in M1

A strategy in M1 can be conveniently denoted by five bits,
each of which can take either cooperation �C� or defection
�D�: The first bit, �, is the move when a player first encoun-
ters an opponent and thus has empty memory. The bit a1 is
the move at time t when the player’s and opponent’s previ-
ous moves at t−1 were C and C �henceforth we denote this
situation as �player’s move at t−1, opponent’s move at t−1�
=�C ,C��, respectively �Table I�. Likewise, a2 is for �C ,D�, a3
for �D ,C�, and a4 for �D ,D�.

Consequently, a strategy in M1 is coded by � �a1a2a3a4
and the total number of strategies is �M1�=25=32, for each of
five bits can have either C or D. For example, C �CDDD,
C �CDCD, and C �CDDC encode GT, TFT and Pavlov, re-
spectively. Further examples include the unconditional coop-
erator �ALLC or AC� coded by C �CCCC and the uncondi-
tional defector �ALLD or AD� by D �DDDD. A nice strategy
�see above� in M1 is represented as �=C, implying that it
starts with C at the first encounter, and a1=C, meaning that it
never provokes the defection first �28�.

B. Transition graphs and tournament for M1

Another way of representing a strategy is to mention all of
the possible states it may meet and all of the possible tran-
sitions between them �9,20,21�. Identifying each state with a
vertex and each transition with an arc �a directed edge�, with
self-connecting included, this procedure yields a transition
graph for each strategy. Suppose, for example, that Alice
employs TFT and Bob does another arbitrary strategy in M1.
From Alice’s viewpoint, the four possible states are repre-
sented by four pairs; �C ,C�, �C ,D�, �D ,C�, and �D ,D�
where the former character indicates her last move and the
latter does Bob’s. If starting with �C ,C�, the next state must
be �C ,X� with X=C or D depending on Bob’s strategy, be-
cause Alice remembers what Bob did at the last encounter.
Repeating this for all the states gives Fig. 1. One can easily
get the graphical representations for any other strategies by
the same procedure, noting that the initial bit � does not
change the transition graph but only makes the starting ver-
tex in the graph different.

From all the 16 transition graphs in M1, TFT is found to
be unique in that it does not permit returning to �C ,D� with-
out visiting �D ,C�, which implies that any strategy cannot
repeatedly suck TFT avoiding retaliation. In order to describe
the time course of the PD game between two agents, the
distinction between transient and recurrent states needs to be
made: Transient states have only outward arcs and thus can-
not be visited repeatedly, while the recurrent states are vis-
ited over and over again. For example, TFT does not have

TABLE I. Bitwise representation of a strategy in M1 as
� �a1a2a3a4.

State Empty �C ,C� �C ,D� �D ,C� �D ,D�
Player’s move � a1 a2 a3 a4

C,C D,C

C,D D,D

FIG. 1. Transition graph for TFT. Each vertex represents a state
in Table I and the directed edges are the possible next states allowed
by this strategy. Each vertex has two outgoing arcs, considering the
move taken by the opponent.
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transient states, while AD has two transient states �C ,C� and
�C ,D� with two recurrent states �D ,C� and �D ,D�.

If two strategies i and j in M1 play the PD game together,
two corresponding graphs are combined to make one deter-
ministic transition graph �Fig. 2�. The move sequence is pe-
riodic and the long-time limit of the average payoff per time
step is determined only by recurrent states of the two, from
which one can calculate easily Uij, the average payoff per
step that the strategy i gains from j. In the same spirit as the
original tournament held by Axelrod, we compute the aver-
age points the strategy i gets from all strategies �including i�
to obtain Table II. So far as each pair of strategies has an
equal acquaintance probability, the tournament results will
converge to these values in the long-time limit. Moreover,
since each value in this table is analytically calculated from
periodic moves in pairs of deterministic strategies, one can
decompose it into the elementary payoffs, T, R, P, and S. For
example, AD, AC, and GT earn �T+ P� /2=3, �R+S� /2=1.5,
and R /2+ �T+ P� /4=3, respectively. One can see that TFT is
not the best within M1 and that strategies with more D bits
often outperform cooperators. We emphasize that the above
results in a round-robin tournament are not related to an evo-
lutionary process yet and need to be checked from evolution-
ary perspectives.

C. Spatial prisoner’s dilemma game for M1

The spatial PD game �SPDG� provides a good framework
for observing the emergent cooperation as it allows the co-

operating strategies to make clusters against defectors �16�.
There is no unique standard in constructing SPDG, and a
different rule may yield a different output, in general. Here
we present our SPDG rules, which have been extensively
used in literature �18�.

We perform SPDG on a two-dimensional 128�128
square lattice with the periodic boundary condition. In the
initial stage of the SPDG, one among all 32 strategies in M1
is randomly assigned to each node of the lattice, and every
agent plays the PD game with her four nearest neighbors.
After all agents play the game, often called one Monte Carlo
�MC� step, this procedure is stopped with a preassigned
probability p or repeats itself with 1− p. When stopped, the
sequence of games so far is termed as one generation whose
average time duration is 1 / p MC steps. In order to make the
effects of transient states �see above� as weak as possible, p
should be sufficiently small to ensure that one generation is
long enough �we observe that p=0.05, corresponding to one
generation as 20 MC steps on average, fulfills this require-
ment�. Whenever a generation is closed, the selection mecha-
nism is activated as follows: Every node, one by one, ran-
domly chooses one of its nearest neighbors and adopts the
neighbor’s strategy if the neighbor has gained more during
that generation. Memory tables for all pairs of agents are
recalculated and payoffs are initialized back to zero, and then
the next generation begins.

Our SPDG simulation readily shows that a cooperating
equilibrium, in which all of the agents are playing C, is
achieved mostly by GT, TFT, and Pavlov, together with a

TABLE II. Average points 1 / �M1�� jUij for each strategy in M1.

Strategy Points Strategy Points Strategy Points Strategy Points

AD 3.00 C �DDDC 2.73 C �DDCC 2.25 C �DCCD 1.69

D �CCDD 3.00 D �DCDC 2.73 D �DDCD 2.22 C �DCCC 1.63

C �DDDD 3.00 Pavlov 2.56 C �CDCC 2.19 AC 1.50

GT 3.00 D �CCDC 2.38 D �CDCC 2.09 C �CCDC 1.50

D �CDDD 3.00 C �DDCD 2.36 D �CDCD 2.02 C �CCCD 1.50

D �DCDD 3.00 TFT 2.35 C �DCDC 1.90 C �CCDD 1.50

D �DDDC 2.97 D �DDCC 2.25 D �DCCD 1.86 D �CCCC 1.50

D �CDDC 2.89 C �DCDD 2.25 D �DCCC 1.81 D �CCCD 1.38

C,C D,C

C,D D,D

(a)

C,C D,C

C,D D,D

(b)
(b)(a) (c) (d)

C,C D,C

C,D D,D

(c)

C,C D,C

C,D D,D

(d)

FIG. 2. Transition graphs from combining two strategies in M1. �a� GT vs GT. If deviated from �C ,C�, the only attractor is mutual
defection. �b� TFT vs TFT. If mistaken, they do not recover mutual cooperation on their own, unless another error brings them back. �c�
Pavlov vs Pavlov, forgiving an error between themselves. �d� Pavlov vs GT. Pavlov is defeated by GT if any error occurs.
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minor strategy C �CDCC �Fig. 3�a��. It is notable that these
surviving four strategies are, in fact, the four possibilities
when we fix the nice bits ��=C, a1=C� and the retaliating bit
�a2=D�. This implies that the virtues of TFT �see above� are
indeed very important conditions for a strategy to be evolu-
tionarily successful.

D. Replicator dynamics and filtering

As the direct SPDG often requires an amount of compu-
tation, we bypass the problem using the replicator dynamics
�RD� �22� with average payoffs �23–25�: Once the average
payoffs are obtained from the transition graphs, the time evo-
lution of the fraction of each strategy can, phenomenologi-
cally but conveniently, be described by RD within the as-
sumption of the full mixing, corresponding to the mean-field
approximation.

Suppose that we perform SPDG with randomly distrib-
uted strategies in a two-dimensional L�L square lattice with
the total number of agents Na�L2. Since each agent plays
the game with z=4 nearest neighbors, the expected gain that
an agent with the strategy i collects, within the assumption of
a full mixing, is written as

Ui = �
j

zUij� j , �1�

where � j is the fraction defined as the number of agents of
the strategy j divided by Na with �i�i=1, and Uij is the
above-mentioned average gain i gets from j. If the relative
growth rate of a strategy is proportional to its relative payoff
deviated from the average over the whole population, we
may write an ordinary differential equation

d�i

dt
= �Ui − �

j

Uj� j	�i, �2�

which is called the replicator dynamics. Note that if each
strategy forms a cluster, the summation over the nearest
neighbors of i cannot cover the whole space, and we must
examine what happens near the interfaces.

Although the RD description is more crude than the actual
SPDG with local interactions, we find that the numerical
integration of RD is surprisingly similar to what SPDG
yields with the random initial distribution of strategies. In
Fig. 3�b�, it is displayed that the four nice strategies of GT,
TFT, Pavlov, and C �CDCC survive just like the previous
observation made for SPDG. Furthermore, the order of rela-
tive fractions of the four is identical in both results. Note that
these four strategies are indistinguishable at this stage, be-
cause the bits other than a1 are not actually used any more.
In order to slightly activate those bits and check how the
surviving strategies behave in the presence of erroneous de-
cisions, we allow each player in SPDG to make mistakes at a
given probability e. For example, e=0.01 means that an
agent’s memory on a neighbor’s last move may be flipped
from C to D or D to C, once in a 100 moves on average.
Depending on the initial condition, various steady-state con-
figurations are obtained. In many cases, however, we find
that Pavlov eventually conquers the whole territory, defeat-
ing TFT �13�, under such a low error rate �Fig. 4�.

It is important that the error-free RD equilibrium selects
out the long run strategies which appear in SPDG �25�. The
dynamics among these strategies are driven by errors in
much larger time scales than the fast extinctions. When e
�1, the difference in these two time scales makes it possible
to separate the fast extinctions from the long run behaviors.
We point out that this selection can be further simplified,
considering that each strategy occupies only a small fraction
at the early stages and that the strategy with the least payoff
decreases most rapidly. That is, the least fit strategy will be
shortly removed from the population in effect, and the re-
mainder’s payoffs are rectified accordingly. Eliminating the
least fit actually reaches the same cooperating equilibrium
with the minimal number of computations, and it works
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FIG. 3. �Color online� Comparison between SPDG and RD. �a�
A simulation result on a 128�128 lattice with p=0.05. �b� Numeri-
cal integration of Eq. �2�.
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FIG. 4. �Color online� A pattern in SPDG on the 128�128
lattice with e=0.01 and p=0.05. Even with the presence of error,
almost all the dynamical patterns at large time scales occur within
the strategies found in the error-free RD, if the error probability is
sufficiently low.
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similarly to the technique called the iterated elimination of
dominated strategies �26�. This procedure will be denoted as
RD filtering since it is based on a fundamental assumption of
RD that the growth rate of a species is proportional to its
payoff. After it simulates the initial short times until reaching
an equilibrium, we come back to SPDG and consider the
slow dynamics due to errors among survivors. Nevertheless,
we stress that this procedure is only a rough approximation
and one should be careful not to expect general coincidence
between them. Based on the numerical support in M1, we are
suggesting that this procedure can be regarded as a criterion
that a feasible strategy is supposed to pass, rather than as a
precise equivalent of SPDG. One obvious drawback is that it
precludes much of the possibility of cyclic behaviors allowed
by the continuous RD �27�, as we give the least fit no chance
to return back �via, e.g, mutations� once removed.

III. APPLICATION TO M2

A. Approach to memory effects

Let us proceed to the study of the strategies in M2 to
examine the effects of memory capacity in evolution. In or-
der to decide the move at time t, an agent needs to remember
her own moves and the opponent’s moves at t−1 and t−2,
respectively, corresponding to 24=16 bits. Until the agent
meets the opponent more than once, the past information is
not yet available, and thus the strategy should specify the
moves for this case with two more bits for the initial two
encounters. Accordingly, the number of strategies in M2 is
counted as �M2 � =216+2=262 144. Based on the previous re-
sults for M1, we use the same method to filter out unsuccess-
ful strategies in an early stage, and then play SPDG only for
surviving strategies.

B. RD filtering

In the filtering procedure for M2, we again calculate Uij in
the same way as before and use the mean-field payoff func-
tion in Eq. �1�, assuming the full mixing. This reflects the
fact that the initial strategies are randomly distributed and the
number of remaining strategies turns out to be large enough
to neglect clustering effects even at the equilibrium. The it-
erated elimination stops when no more strategies can be re-
moved.

During 1.4�105 steps to reach the goal, we record the
number of remaining strategies N and their expected payoffs
U ranged over �Umin,Umax�. For comprehension, this range is
divided by N at each step in Fig. 5. Both of Umin /N and
Umax /N eventually shrinks to a single point at 3.0, indicating
that all of the strategies obtain R=3 from mutual coopera-
tion. From the concave shape of Umax /N, we see two eras:
Roughly before three-quarters of the whole period, Umax /N
decreases by removing the least fit, as the top-ranked strate-
gies exploit naive cooperators. After the prey is consumed
out, however, they become the next victims. Removing de-
fectors now enhances the degree of cooperation and Umax /N
rises up as well. There are observed two great extinctions in
that 212=4096 strategies disappear simultaneously at the

1424th and 124 910th steps, respectively. These are symbolic
of two eras, because AC is taken off at the first extinction
and AD is at the second.

After completing the filtering procedure, we find an equi-
librium, where 12 944 surviving strategies constitute a set �.
The number is still large but only about 5% of �M2�. There
are two properties in this set: �i� All strategies in � are nice
in the sense that they never defect first. �ii� After defected at
the last two steps, about 94% of the surviving strategies
choose to retaliate. It is also remarkable that GT and TFT are
included in � but Pavlov is dropped out.

C. Spatial prisoner’s dilemma game for M2

We next perform SPDG with e�0 for � on a two-
dimensional 500�500 lattice in the same manner as we
did for M1. Note that the lattice size is almost 20 times
greater than the number of strategies, which turns out to be
enough to find recognizably common patterns. After 2.4
�104 generations, most strategies in � also disappear and
the number of survivors is usually less than 10 in each real-
ization �Table III�.

First, we observe two strategies with only eight recurrent
states per each. They are named as intelligent-TFT �I-TFT�
in common, because TFT is embedded as an attractor in
their recurrent states and the transient states are activated
only when an error occurs �Fig. 6�a��. Again, the state
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FIG. 5. �Color online� Filtering procedure on M2. It takes about
1.4�105 steps to reach a cooperating equilibrium. �a� The remain-
ing fraction N /Nt, where N is the number of survivors and Nt

=218=262 144. Insets show the two great extinction events at the
1424th and 124 910th steps, respectively. �b� The maximum and
minimum values of the payoffs, divided by N. The straight line
represents R=3, the reward for mutual cooperation. Insets and ar-
rows are for the great extinction events again.
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�XtXt+1 ,YtYt+1� represents that Xt and Xt+1 �Yt and Yt+1� are
the player’s �the opponent’s� moves at two subsequent times
�X ,Y =C or D�, which is connected to �Xt+1Xt+2 ,Yt+1Yt+2� by
a directed arc. Without errors, they are ordinary TFT and
never sucked repeatedly by any other strategies. With errors,
on the other hand, they return back to mutual cooperation
without the chain retribution between themselves, overcom-

ing the weakness of the classical TFT. Furthermore, this error
tolerance is secured from repeated abuse by being transient.
We therefore conclude that the only way to defeat I-TFT is
more efficient cooperation than I-TFT’s. As long as the error
occurs rarely enough not to disturb its recovery path, I-TFT
will clear the defecting strategies out and eventually make
way for better cooperators.

TABLE III. Strategy table for M2.

Statea � �C /D�b ECc ETd I-TFTe State � �C /D� EC ET I-TFT

�CC ,CC� 100 /0 C C C� �DC ,CC� 50 /50 D D C�

�CC ,CD� 42 /58 C C D� �DC ,CD� 45 /55 D�

�CC ,DC� 52 /48 D D C� �DC ,DC� 50 /50 C D C

�CC ,DD� 6 /94 D �DC ,DD� 47 /53 C

�CD ,CC� 54 /46 C C D �DD ,CC� 52 /48 C

�CD ,CD� 48 /52 C C f �DD ,CD� 47 /53 C

�CD ,DC� 56 /44 C� �DD ,DC� 50 /50 C�

�CD ,DD� 31 /69 D� �DD ,DD� 53 /47 D�

aA state �X1X2 ,Y1Y2� means that X1 and X2 �Y1 and Y2� are player’s �the opponent’s� moves at two subse-
quent times, respectively.
bPercentages of C and D in �, the set of the remaining strategies after RD filtering.
cEfficient cooperator’s moves at each given state.
dEfficient trigger’s moves. Although similar to EC’s, this does not follow EC at �DC ,DC� but defects it.
eI-TFT’s moves. The moves at the recurrent states are underlined.
fIf both of C and D are observed, the move is written as blank.
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FIG. 6. �Color online� Graphical representations of surviving strategies in M2. �a� The full transition graph for I-TFT. Only the black
vertices are recurrent states, while others are transient �see also Fig. 1�. The dashed arcs indicate the paths activated when an error occurs
between I-TFT’s. Since two strategies acting as I-TFT are found, we describe the duality in the graphs by the dotted arcs connected to two
�CD ,CD� �at the top-left and the bottom�. �b� Parts of transition graphs characterizing EC and ET. While an EC-typed strategy tries to
recover mutual cooperation �CC ,CC� from an erroneous state �CC ,CD� by the dashed lines, an ET-typed strategy repeatedly defects it by
the dotted line.
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Such efficient cooperators are characterized by the way of
dealing with an error between themselves, depicted in Fig.
6�b� with the dashed lines. We denote those strategies with
such an error recovery path as efficient cooperator �EC�. An
EC-typed strategy outperforms I-TFT because it costs less by
one point in recovering an error. This one point may look
small but has a significant meaning after thousands of gen-
erations. Yet an EC strategy can be invaded by even such a
trivial strategy in M1 as � �DDCC which simply alternate
between C and D, regardless of �. That is, inserted among
the strategies of M1, an EC-typed strategy does not over-
whelm M1 and sometimes becomes exterminated. Mean-
while, I-TFT under the same condition works so successfully
that it wins the whole area by defeating all of the M1 strate-
gies, including Pavlov, in every realization so long as p is
small enough.

Last, some cooperating strategies are triggered to deceive
EC by a single error: At the last step of EC’s error recovery
phase, they defect again, instead of getting back to �CC ,CC�
as desired, and complete the exploiting loop �see the dotted
line in Fig. 6�b��. Even if they are trigger strategies special-
ized to defeat EC, from which we simply call them efficient
trigger �ET�, I-TFT suppresses them and helps EC to rise
�Figs. 7�a� and 7�b�.

Those two I-TFT strategies are distinguished by how they
respond to the state �CD ,CD� �Table III�. Let us denote the
I-TFT strategy responding with C as I-TFTC and that with D
as I-TFTD. Comparing a population of I-TFTC with that of
I-TFTD, the former is slightly better off, as the latter has a
probability of O�e2� that both players make errors at the
same time, leading to �CD ,CD�→ �DD ,DD� �Fig. 6�a��.

If we repeat this SPDG procedure after removing I-TFT
from �, some variants of I-TFT play the role of protecting
EC. They have only one or two different bits from either of
I-TFT strategies, but their recurrent states do not constitute
TFT. Further removing such variants, we see that EC strate-
gies are helplessly threatened by the parasitic ET �Fig. 7�c��.
Since ET strategies cannot do well with errors, the level of
cooperation remains low. This comparison clearly shows the
crucial role of I-TFT.

Let us recall Pavlov in comparison with EC: While GT
and TFT ignored the presence of an error within the same
species, not to be sucked by anyone, Pavlov invented a re-
covery path �C ,D�→ �D ,D�→ �C ,C� and could be the final
winner in M1. Nevertheless, it is at the very point that GT
overruns Pavlov. It is therefore not surprising that Pavlov
fails to enter �, because so many strategies of M2 are willing
to exploit its shortsighted tolerance. Even though EC devises
a more sophisticated recovery path than Pavlov’s, it is still
far from safe. The point is that all of their states are recur-
rent: Even if they use every given memory capacity to deter-
mine the next move, once the patterns are recognized, the
opponent can get back to the defecting state as many times as
it wants. However, EC strategies are successful in the long
run, because they try to cooperate better at some expense of
security risk. The success of EC crucially depends on the
existence of such balancing strategies as I-TFT, and is thus
path dependent.

IV. SUMMARY

In summary, we presented a thorough examination on
strategies under restrictions of the time horizon in the iter-
ated PD game. As the time horizon is enlarged, a variety of
trajectories to equilibrium become possible, but there are still
common dynamical patterns. That is, the system reaches ef-
ficient cooperation through intermediate prevalence of TFT-
like strategies, which solve the dilemma between security
and tolerance by using transient states. As I-TFT spends most
time as the classical TFT which refers only to the opponent’s
last move, it becomes even more likely to win if memory is
costly �21�. This gives a clue for understanding how the
memory could be effectively saved in social interactions and
differentiated into other functions.
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FIG. 7. �Color online� SPDG for M2. �a� All of the 12 944
strategies in � are initially distributed on 500�500 lattices. They
are classified as EC, ET, I-TFT and other miscellaneous ones, and
the plotted values are averaged over 50 realizations. �b� Three rep-
resentative strategies belonging to EC, ET, and I-TFT, respectively,
are distributed on a 32�32 lattice. �c� Averaged results over 10
realizations on 500�500 lattices, after removing two I-TFT strate-
gies and their six similar variants �see text� from �. There are given
p=0.02 and e=0.01 in common.
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The detailed features of our observation in this paper may
be partially owing to our specific choice of elementary pay-
off values. However, we believe that the successful strategies
such as I-TFT and dynamical patterns between them have
good reasons to be remarkable in a more general context of
the evolutionary PD game.
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